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SUMMARY 
This paper examines the flow characteristics of a body of small 

slope planing at high Froude number over a water surface. An 
equation is obtained relating the slope of the planing surface to 
an integral containing the pressure distribution on the planing 
surface. The  equation is expanded for large Froude number and 
a solution is obtained by an iteration process. At each stage of 
the iteration process the integral equation of ordinary thin aerofoil 
theory is solved. The  pressure distribution on the planing surface 
is derived as a series in inverse powers of the Froude number F,  
as far as the F-4 term. Computations are performed for the 
planing of a flat plate, a parabolic surface, and a suitable linear 
combination of these shapes which results in a flow without a 
splash at the leading edge. 

1. INTRODUCTION 
When a surface craft moves through water at low speeds it remains 

near its floating position relative to the undisturbed water surface, the 
lift being supplied mainly by hydrostatic forces. If the speed of the craft 
is increased through a certain critical value, the craft rises and moves over 
the water, with separation of the flow taking place at the trailing edge. 
T h e  craft is then supported by hydrodynamic forces and is said to be planing. 

One of the features of a planing motion is the narrow jet of water, known 
as the splash, which is thrust forward by the planing surface near its leading 
edge. Neglecting friction, the drag force on a planing craft is made up  of 
two parts: (1) a splash drag due to the work done in creating the splash, 
and (2) a wave drag representing the energy carried downstream in the 
wave motion set up by the passage of the craft. If the craft, which is taken 
to be of length 21, has a velocity U ,  waves fixed with respect to the craft 
are of wavelength X = 27rF21, where F = U(gZ)-li2 is the Froude number. 

This  paper is concerned with the determination of the two-dimensional 
flow past planing surfaces which are inclined at small angles to the 
undisturbed water surface. A solution applicable at high Froude number 
is obtained for a planing surface of arbitrary shape. It is seen that the 
surface shape can be chosen to give a smooth flow at the leading edge, 
thereby eliminating the splash drag. Since the wave drag is small at high 
Froude number, the shape which eliminates the splash drag may provide 
a good approximation to the optimum design for minimum drag. 

T h e  solution in the infinite Froude number case has been given by 
Wagner (1932). The  equations governing the flow are shown to be the 
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same as in the flow past infinitely thin aerofoils. Except for the splash, 
which is assumed thin, the flow set up by the planing surface is identical 
to the flow in the lower half-plane of an unbounded fluid disturbed by an  
infinitely thin aerofoil of the same shape as the planing surface. T h e  
pressure distribution on the planing surface is the same as that on the lower 
side of the corresponding aerofoil and the lift is therefore half that of the 
aerofoil. An account of the method used by Wagner for obtaining the 
splash drag from the aerofoil solution is given in $3. Wagner examines 
the flow past a body of circular camber at various angles of incidence 
of the chord line. At zero incidence drag-free planing is achieved since 
the wave drag is zero at infinite Froude number and for a symmetrical 
surface there is no splash drag since the flow must be smoothly joined to 
the planing surface at the leading edge as well as the trailing edge. 

Lamb (1932, 55242-4) considers the two-dimensional flow due to the 
application of a pressure point to the surface of a stream. The  planing of 
a body at arbitrary Froude number can be represented by a distribution 
of pressure points whose strength is proportional to  the excess pressure 
on the body at each point. The  boundary condition of zero normal velocity 
on the body then leads to an equation relating the slope of the planing surface 
to an integral involving the pressure distribution along the planing surface. 
Lamb considers two simple pressure distributions for which the integrals 
can be evaluated to give the shape of the planing surface. 

Two attacks on the integral equation involved in the inverse problem 
of finding the pressure distribution on the planing surface in terms of the 
given surface shape have been made by Maruo (1951) and Squire (1957). 
Maruo assumes a Fourier series expansion for the pressure distribution 
in the form 

where x = - lcose for 0 < 0 < n denotes the distance measured from the 
centre of the planing surface. An infinite series for the body slope results, 
comprising an infinite set of functions multiplying the coefficients a,. 
From this set an orthogonal set is constructed, which enables equations 
for the a,,’s to be derived. T h e  example of the planing of a flat plate at 
general Froude number is computed, yielding the pressure distribution 
and the lift and drag coefficients as functions of the Froude number. 
A diagram is given showing the variation of the constants a. to a5 with 
Froude number, but no other indication is given regarding how many 
constants have to be calculated for accurate results. Maruo’s work provides 
the solution to the planing problem of an arbitrary surface shape at general 
Froude number. However, the analysis necessary in obtaining and using 
the orthogonal functions described above is very complicated and the 
present paper is intended to provide a simple alternative to this method. 

Squire considers only the first four terms in a similar series for the 
pressure and calculates the coefficients to  give a surface shape as nearly 
flat as possible by imposing mean curvature conditions. The  results obtained 
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agree over a wide range of Froude numbers with those given by Maruo 
for the flat plate. 

This enables the 
solution for an arbitrary body shape to be easily computed, provided the 
Froude number is moderately high. It is seen, from comparison with the 
pressure distributions on a flat plate given by Maruo, that the approximate 
solution derived here provides accurate results for Froude numbers greater 
than 3. 

The  equation relating the planing surface slope to an integral containing 
the pressure distribution on the planing surface is solved by an iteration 
process. T h e  integral is expanded as a series in inverse powers of the 
Froude number. An iteration process provides successive terms in the 
pressure distribution expansion in a similar series. At infinite Froude 
number, the solution to the integral equation is the thin aerofoil solution, 
yielding the first term in the pressure distribution expansion as an integral 
of the body slope. At each stage of the iteration procedure the same thin 
aerofoil theory integral equation has to be solved. T h e  solution of this 
equation provides each new term in the expansion of the pressure 
distribution as an integral of the previous terms. The  expansion up to  
terms of order F-4 is obtained in $ 3  and the multiple integrals obtained 
in the solution are reduced to single integrals of the body slope, involving 
certain functions which are given in tables 1 and 2. The  lift and drag 
coefficients are obtained in similar form. 

The  large Froude number approximations for the planing of a flat plate 
and of a parabolic camber shape are given in $4. As already mentioned, 
a parabolic surface at zero incidence, planing at infinite Froude number, 
has smooth flow at the leading edge and therefore has no splash drag. 
An important result, that emerges from the study of the flat plate and 
parabolic camber flows at high Froude number, is that there always exists 
a linear combination of the two flows which represents a flow having no 
splash. I n  this high Froude number range, where the wave drag is small, 
elimination of the splash drag causes a considerable reduction in total drag. 
T h e  planing characteristics for a body shape derived in this manner are 
discussed in $4. 

A new approach is presented in $ 2  of this paper. 

2. LARGE FROUDE NUMBER APPROXIMATION 

A surface craft, having large span so that the motion can be assumed 
two-dimensional, is considered to be planing at a speed U over a water 
surface. The  water is considered to be incompressible and of infinite 
depth. The  planing surface is assumed to  be inclined at a small angle to 
the horizontal at all points of its length. Cartesian coordinates are taken 
with the origin at the middle of the planing surface, the x-axis in the direction 
of motion, the y-axis vertically upwards and half the length of the wetted 
surface is taken as the unit of length. 

For an irrotational motion, a solution to Laplace’s equation is sought 
in the lower half-plane which satisfies the boundary conditions on the free 
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surface and on the body. The  boundary conditions are linearized with 
respect to the perturbation velocities and are applied on y = 0, since the 
height of the water surface, 

is of the same order as the perturbation velocities. 

surface is 

Y = d x ) ,  (2) 

The linearized boundary condition of zero normal flow across the water 

(3)  3 = - -  a4 
dx aY ’ 

where UV+(x,y)  is the perturbation velocity. On the planing surface 
1x1 < 1, dT/dx is prescribed as S ( x ) ,  the slope of the surface. Bernoulli’s 
equation gives a second relation between 9 and 4 to be applied on y = 0 
as 

P ~ - 3 +Kq+p4 = 0, 
pu2 ax  (4) 

where K = F-2 and p is the density of water. The  pressure p ,  measured 
in excess of atmospheric pressure, is zero on the free surface and is to  be 
determined on the planing surface. The  term p4 in equation (4) represents 
Rayleigh’s artificial friction, which ensures no disturbance far ahead of the 
craft. The  term can alternatively be regarded (according to Laplace 
transform theory) as the contribution for large time from a+/%, for the 
unsteady problem of a craft starting from rest. T h e  required steady solution 
is obtained by eventually letting p tend to zero through positive values. 

A potential which satisfies the free surface conditions is given by Lamb, 
the planing surface being represented by a distribution of pressure points, 
and may be written as 

- 

where p ( ( )  = pU2 P(() is the excess pressure on the -body. The  boundary 
condition ( 3 )  on the planing surface leads to the integral equation for the 
pressure distribution 

where the Cauchy principal value is to  be taken in the first integration on 
the right-hand side. 

The  inner integral in the last term of equation (6) will now be transformed 
into the exponential integral by putting 

The  integral with respect to X parallel to the imaginary axis is deformed 
into an integral parallel to the real axis, as shown in figure 1, there being 
no contribution from paths at infinity in the negative real half-plane. 

x - f  = a, in(cr-K+ip) = X. (7) 

On letting p + 0 through positive values, 
- m  &a(z-S) 

lim J 
@+o o E-K+ip  



470 E. Cumberbatch 

where H ( x )  is the Heaviside unit function. The residue term -27rieiag 
is included when a < 0 since the contour is then deformed over the pole 
at X = 0. The expansion for small K of the integral on the right-hand side 
of equation (8) is given by Jahnke & Emde (1945), enabling equation ( 6 )  
to be written 

+ I’ ~ ( 5 )  [7r - +7r sgn(x - 5 )  + (y - 1 ) ~ ( x  - 5 )  + 
97 -1 

+ K  (x-~)log(Klx-51)+...1 @, ( 9 )  
where y = 0.5772 is Euler’s constant. This equation is solved by an 
iteration process on the small parameter K, yielding the pressure P(5) as  
a series in K. 

Figure 1. Integral paths for the exponential integral in equation (6), travelling from 
the point P = - ia(K- ip)  parallel to the imaginary axis, are deformed into 
paths parallel to the real axis as indicated in (a )  for a > 0 and in (b )  for a < 0. 
The  contour is deformed over the pole at X = 0 in (a). 

In  the infinite Froude number case the integral equation ( 9 )  for the 
pressure distribution on the body reduces to 

This equation is that of thin aerofoil theory and is discussed, for example, 
by Tricomi (1957). The solution to equation (10)  gives the first term, 
Po(f) ,  in the expansion of the pressure, as 

po(t> = - J(-) 1 + 5  j - S ( t )  J(Lt) dt. 
7r 1-c  - 1 5 - 5  l + t  

Equation (10) admits another solution of similar form which is rejected 
on account of the Kutta condition that the singularity has to be at the leading 
edge. Using the solution for P o ( f ) ,  equation ( 9 )  when approximated to 
the first order in K becomes 
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where the known functions have been collected on the left-hand side. 
This integral equation has the same form as the aerofoil integral equation. 
A solution for the second approximation Po(<) + KPl(<) follows, where 
Pl(<) is given by 

Equation (9) may now be approximated to the second order in K using the 
above solution for P o ( f )  + k'Pl([)  and the third approximation 

to the pressure distribution follows in like manner. P,(<) is given by 
Po(<) + KPl(5) + K 2  P2(5) 

where 
Q ( r , t )  = P1(~) ( l -&sgn( t - r ) )+  

1 + - P,(r)[(y - l ) ( t -  Y) + ( t -  r)log(Kjt - r l ) ] .  
77 

The expressions (1 l ) ,  (13) and (14) provide the expansion of the pressure 
distribution on the body up to terms of the order of F-4 in the form of 
integrals involving previous terms in the series. I n  the following section 
these integrals are transformed by successive substitutions to  ones con- 
taining the given function S ( t )  only. The  resulting multiple integrals are 
reduced to single integrals. 

3. SIMPLIFICATION OF THE SOLUTION: LIFT AND DRAG 

I n  the expressions for the terms in the expansion of the pressure distribu- 
tion on the body given in the previous section, the distance integrations 
along the body can be replaced by angular integrations by substitutions 
of the form 

5 =  - C O S ~  for 0 < 4 < 77. (15) 

Equation (1 1) for the first term in the pressure distribution expansion may 
then be rewritten 

where 1 "  

7 7 0  

A, = - 1 S( - c o d )  do. 

Substituting this expression for Po( - cos 4) in equation (13) for the second 
term in the expansion leads to 
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Z ( 3 )  

0 
0.0355 
0.0541 
0.0678 
0.0788 
0.0878 
0.0954 
0.1019 
0.1075 
0.1 124 
0.1166 
0.1234 
0.1284 
0.1321 
0.1 347 
0,1364 
0.1372 
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where 

d 
_____ 

26 
30 
34 
38 
42 
46 
50 
54 
58 
62 
66 
70 
74 
78 
82 
86 
90 

B, = - S(-cosO)(l fcosO) do, 
0 

1 Q  T(+) = - - 1 logtan $0 do. 
7 r ’ o  

Values of T(+) are given in table 1. This  form of PI( - cos+) is convenient 
for some very simple S(-cos+)  since the formula 

* cosne T sin n+ 
(18) dO= ~ i 0 COSO-cos+ sin C#I 

enables the multiple integral in (17) to be evaluated directly. For general 

4 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
22 

0 
0.031 9 
04561 
0.0774 
0,0968 
0.1 148 
0.1316 
0.1476 
0.1627 
0.1772 
0.1910 
0.2171 
0.241 2 
0.2637 
0.2848 
0.3047 
0.3234 

0.3579 
0.3887 
0.4165 
0.441 5 
0.4640 
0.4841 
0.5021 
0.5181 
0.5321 
0.5443 
0.5548 
0.5635 
05706 
0.5761 
0.5800 
0.5823 
0.5831 

0.1369 
0.1 345 
0.1305 
0-1251 
0.1185 
0.1111 
0.1030 
0-0942 
0.0849 
0.0751 
0.0650 
0.0546 
0.0440 
0.0331 
0.0222 
0.01 11 
0 

Table 1. Values of the functions T(4) and Z(4) defined in equations (17) and (21), 
with the argument 4 measured in degrees. For the range 90’ < 4 < 180”, 
the formulae T(4) = T(l80-4), Z(4)  = -Z(180-$) may be used. The 

second of these relations follows from the result log2 tan 44 d$ = in3. 

body slope the multiple integral in (17) is reduced to a single y-integration 
suitable for numerical computation by first performing the 0- and #- 
integrations. The  changing of the order of integration requires caution 
because of the double pole in the integrand when O = y = $. The identity 

sin 0 [ j.* S( - cos y)sin2 y 
J~cosO-cos*  0 COSO-cosy 

d y ]  dO+ 
(S(  - cosy) - S( - cos $))sin2 y 

0COSO-cos* [I” 0 cos e - cosy 
‘* sin0 

dy dB (19) 1 * sin0 + S( - cos *) 
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overcomes this difficulty since the order of integration in the first term 
on the right-hand side may now be changed as it does not contain the 
double pole. The second term in (19) may be evaluated directly since the 
integrations do not involve the body slope. Performing the 8- and $- 
integrations and making the substitutions t = tan &+(tan &y)-' and 
u = tan++(tan+y)-l, equation (17) is reduced to the form 

PI( - cos +) = A, tan &+ + B, T(+) + 

where 

tan 2+ u + 16 tan24+ j:u 
rr2 

(u2 tan2 84 + 1)-21 du, (20) u2 tan2 ++ - 1 

logt 
Fl(X) = i, t2_1 dt.  

Values of F,(x) are given in table 2. 

X 

0 
0.001 
0.002 
0.004 
0.006 
0.008 
0.010 
0.01 5 
0.02 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.06 
9.07 
0.08 
0.09 
0.10 
0.12 
0.14 

0 
0.0079 
0.0144 
0.0261 
0.0367 
0.0466 
0.0561 
0.0780 
0.0983 
0.1 172 
0.1352 
0.1524 
0.1688 
0.1847 
0.1 999 
0.2290 
0.2565 
0.2825 
0.3074 
0.3311 
0.3759 
0.4174 

0 
0.0635 
0-1061 
0.1 741 
0.2304 
0.2798 
0.3242 
0.4206 
0.5026 
0.5747 
0.6394 
0-6982 
0.7522 
0.8022 
0.8488 
0.9332 
1.0084 
1.0759 
1.1371 
1.1931 
1.2919 
1.3767 

X 

0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .oo 

0.4562 
0.4927 
0.5272 
0.5598 
0.5909 
0.6205 
0.6487 
0.6758 
0.7386 
0.7957 
0.8480 
0.8961 
0.9406 
0.9819 
1.0205 
1.0566 
1.0905 
1.1224 
1.1526 
1.1811 
1.2081 
1.2337 

" 

1.45 04 
1.5151 
1.5724 
1.6234 
1.6691 
1.7101 
1.7527 
1.7806 
1.8514 
1.9075 
1.9523 
1.9881 
2.0168 

' 2.0398 
2.0597 
2.0721 
2.083 1 
2.091 2 
2.0970 
2.1008 
2.1023 
2.1036 

Table 2. F,(x),  F,(x) are defined in equations (20) and (21). The  relations 

T(4) d4, provide a check on the accuracy of Fl( l )  = Q+, FZ(1) = -4.. 
tables 1 and 2. 

15 
P2( - cos 4) may be similarly reduced to single integrals involving the 

body slope. The logarithmic term in equation (14) may be dealt with by 
integrating equation (10) from - 1 to y with respect to x and then from 
- 1 to r with respect to y .  Using techniques similar to those applied in 

F.M. 2H 
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reducing Pl( - cos +), Pz( - cos 4) may be expressed as 

P,(-cos+) = A,tan$++B, T(+)+C2sin+- (2Al/n)sin+logtan$+- 

- (Bl/n2)sin C$ log2 tan $4 + 
+ $rB1 cos 4 - S( - cos B)sin2 0 de ( i'I 

J': 16 
55.3 

- - sin+tan3++ (u-u3)F,(u) x 

[ S(fan2 +$ - u2) (uz + tan2 &$)-3 - 

tan2 +$ + u2 

where 

S( - cosB)sin2Ologtan $6' de, 

C, = - + r r ~ ~ ,  + J '' S( - COS e)sin e z(e) de, 

2 ~ - 1 + 2 1 0 g 4 K + -  T(B)dB , 

log2 tan $y dy - 

0 

277 7 - r O  'i" ) 
Y(0) = (2/n3)sin2 0 log2 tan 40 + L sin2 0 - 4 sin 2eZ(e), 

e 
, 

Values of the functions Z ( 0 )  and F2(x)  are given in tables 1 and 2. 
The lift coefficient, 

c, = P( - cos +)sin C$ d#, 
0 

may now be obtained to the second order in K as 

C L -  - - +TIB,- +.nB2K+ 

sin2Bcose dfl K2 .  (22) 
- II 1 

Similarly the drag coefficient, 

C, = " P( - cos 4)S(  - cos +)sin # dC$, 
0 

to the second order in K is 

C, = T I [ A ~ +  (2AOA,+$77B3K+ ( 2 ~ 0 1 ~ , + ~ ~ + ~ 7 - r B 1 B , ) ~ 2 ] .  (23) 
The splash drag is determined by considering the singular term A tan $+ 

Wagner interprets this term, in the pressure distribution on the body. 
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which corresponds to a term with a ~ 1 ; ~  behaviour in the complex potential, 
as describing the reversal of the fluid in the narrow jet of width 6 forming 
the splash and he obtains the relation 6 = =$7~,4~. The work done to produce 
the splash may then be calculated in terms of A to  give the splash drag 
coefficient as 

To the second order in K, therefore, 
c, = n A 2 .  (24) 

(25 z C, = .rr[A2,+2AoA, K+(2AoA2+A:)K2]. 
The shape of the free surface is 

~(x) = P(f ) ( l - sgn(x- f ) ) s inK(x-5)  df+ 
-1 

+ 1 [ P(f)[{insgn(x-f)- S,(K(x-f))}sin K(x--f)- 
77 -1 

- C ~ ( K ( X  - ~ ) ) C O S  K(x - E ) ]  d f ,  (26) 
where Si and Ci are the sine and cosine integrals. The  wave drag is derived 
from the form of the waves far downstream. The  first term on the right-hand 
side of the equation for ~ ( x )  represents the wave train downstream, while 
the second term represents a local disturbance. The wave drag coefficient 
is deduced to be 

= $n2Bf K + +r2B1 B2 K2, (27 1 
expanded to the second order in K. I t  is noticed that the large Froude 
number approximations for the splash and wave drag given by (25) and (27) 
add up to give the total drag (23). The relation 

valid to the second order in K,  may be obtained from equations (22) and (27). 
c,, = Kc; (28) 

4. LARGE FROUDE NUMBER PLANING FOR FLAT 

AND PARABOLIC SHAPES 

I n  this section the large Froude number expansion for the pressure 
distribution up to terms of order K2 is derived for planing surfaces of flat 
and parabolic shape. For the planing of a flat plate the body slope is given 
by S(-cosO) = 01, where cc is the inclination of the plate. Substitution of 
this value of S (  - cos 0) in the expressions (16), (20) and (21) for the pressure 
distribution in the previous section gives 

(l/cc)P( - cos #) = A, tan +,# + B, T(+) + C, sin # - 

+ (K2/n2)sin #(2 + cos #)log2 tan $4 + 
+&K2sin2#- &.rrK2(1 +2cos#)Z($~), (29) 

2 H 2  
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Figure 2. Distributions of the pressure coefficient Plu on a flat plate at  inclination u, 
planing at Froude numbers corresponding to K = 0,0.05 and 0.1. The 
lift coefficients in these three cases are C&= mx, 0.8271.u and0*73ru, respectively. 
The leading and trailing edges are at x = 1 and x = - 1. 

The pressure distributions on a flat plate planing at Froude numbers 
corresponding to K = 0, 0.05 and 0.1, are drawn in figure 2. Comparison 
with the exact pressure profiles on a flat plate obtained by Maruo show that 
the large Froude number expansion up to terms of order K 2  is adequate 
for K less than about 0.1. At K = 0-1, which corresponds to a Froude 
number of about 3, there is a 6% discrepancy. 

For a planing surface of parabolic camber the slope of the surface is 
taken to be S( - cos 0) = fl cos 8. The pressure distribution expansion to 
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terms of order K 2  for this shape is 

(1/,8)P( - cos+) = A, tan &b + B, T(+) + Cp sin4 - 

K 2  sin 2+ log tan ++ + K 2  sin 4 log tan Q4 t - (E-w) 
K2 K2 

7T2 12 
+ - (1-Qsin2+)sin+log2tan&b- - sin3+- 
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- ‘2 K2cos#Z(+), (30) 
2 

where 
A P = - + T K + ( & T ~ + ~ ) K ~ ,  

Bp = -K+(T+ %)K2, 

K C = 1 -  - +&K210g+K+ 
7T P 

At infinite Froude number the singular term Aptan++ in the pressure 
distribution disappears. This represents a flow which is smooth at the 
leading edge and the motion is achieved with zero splash drag. The pressure 
distribution in this case is elliptical. 

From the pressure distributions for the flat plate and parabola, it can 
be seen how a flow without a splash drag may be obtained at any preassigned 
high Froude number. If the planing surface has a slope which is a linear 
combination of the slopes S( - cos 8) = u and S( - cos 8) = ,8 cos 8, so 
chosen to eliminate the singular term tan$+ in the resulting pressure 
distribution, then a splash-free flow will result. For the Froude number 
range F > 3 ,  the pressure distribution on a planing surface chosen in this 
way approximates to the elliptical distribution on the parabolic shape 
planing at infinite Froude number. The required combination is obtained 
by choosing the constants u and ,8 to satisfy the relation 

a:,&!= -A p :A,, ( 3 1 )  
where A, and A, are defined in equations (29)  and (30). I t  is to be 
emphasized that the splash-free flow obtained by satisfying this relation 
is attained at only one particular Froude number. As p determines the 
shape of the planing surface, the above relation is satisfied for any given 
parabolic shape by trimming the craft to give the required angle of 
incidence u. 

The lift coefficient for a combination of the flat plate and parabola is 
derived by substituting S( - cos8) = a+p cos 8 in (22), and is given by 

C, = ~ m ( l -  4*41K+ K 2  log QK+ 19*9K2) + 
+ +,8~(1-3.99.K+ +K210g$K+ 17.4K2). (32 )  

This represents the sum of the lift coefficients for the flat and parabolic 
shapes (the pressure distribution for the combination is derived by adding 
the pressure distributions in (29)  and (30)) .  Equations ( 3 1 )  and (32)  may 
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3-30 

alternatively be used to express u and /3 in terms of C, and K (correct to 
terms of order K 2 )  in the form 

u = KC,, . (33) 
/3 = (2/x)CL(1 +0*85K- +K210g 4K-0.2K2). (34) 

These equations give the necessary incidence u and shape (specified by /3) 
to obtain a given lift coefficient for planing without splash at any particular 
Froude number F > 3. For this range of Froude numbers, corresponding 
to K < 0.1, the K 2  terms in (34) are less than 2% of 8, and both u and f i  
may be taken as linear in K. 

The shape of such a splash-free planing surface for a Froude number 
corresponding to K = 0.05 is shown in figure 3, together with the local 
wave profile. Since the lift coefficient determines the magnification in the 
vertical direction it is convenient to plot y(C,)-l instead of y. The shape 
of the free surface is obtained from equation (26) by numerical integration 
using the large Froude number approximation for the pressure distribution. 
The drag coefficient for the splash-free craft planing at K= 0.05 is derived 

- 
0 ' I5 x 

Figure 3. Splash-free craft planing at K = 0.05 shown with local free surface shape. 
Vertical scale is enlarged as 

from (28) as C, = 0.05 C i .  By way of comparison, the drag coefficient 
for a flat plate planing at the same Froude number is C, = 0.39Ci. This 
drag is obtained by adding the wave drag (28) to the splash drag C, = xA5 
(24), where A, is defined in terms of u by (29) and may be expressed in 
terms of C, by using (32) with = 0. A considerable reduction in drag 
is thus effected by eliminating the splash, so that the shape of such a 
splash-free craft may provide a good approximation to the optimum design 
for minimum drag. 

The writer wishes to express his thanks to Professor M. J. Lighthill 
and to Dr R. F. Chisnell for many helpful discussions on this work, which 
was carried out while the writer held a Department of Scientific and 
Industrial Research maintenance grant. 

REFERENCES 

The craft lies between x = - 1 and x = + 1. 
indicated. 

JAHNKE, E. & EMDE, F. 1945 Tables of Functions, 4th Ed. New York: Dover. 
LAMB, H. 1932 Hydrodynamics, 6th Ed. 
MARUO, H. 1951 PYOC. 1st rapan Nut. Congress,for Appl. Mech., p. 409. 
SQUIRE, H. B. 1957 Proc. Roy. Sac. A, 243, 48. 
TRICOMI, F. G. 1957 Integral Equations, 1st Ed. 
WAGNER, H. 1932 Z. Angew. Math. Mech. 12, 193. 

Cambridge University Press. 

New York: Interscience. 




